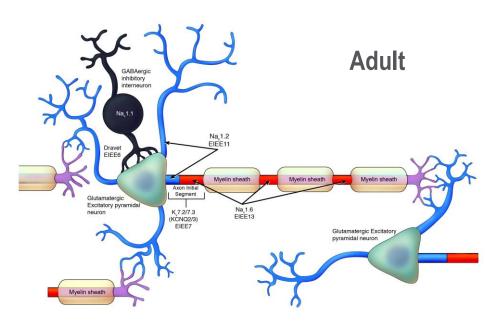
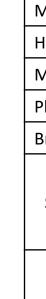

XEN393, A Novel Selective Dual Inhibitor of Nav1.2/Nav1.6 Channels Prevents **Electrically-Induced Seizures in Mice and Rats**


James Empfield, Parisa Karimi Tari, Girish Bankar, Nina Weishaupt, Samuel J. Goodchild, Kuldip Khakh, Michael Wilson, Thilo Focken, Alison J. Cutts, Charles J. Cohen, J.P. Johnson Jr. Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC, Canada

BACKGROUND

 During early development Na_v1.2 is the major voltage-gated sodium channel isoform in the axons of excitatory CNS neurons. As animals, including humans, mature, the isoform distribution changes to contain a higher fraction of Na_v1.6 in addition to Na_v1.2.



- Xenon is currently developing a selective inhibitor of $Na_v 1.6$ (XEN901) for epilepsy based on the hypothesis that nonselective sodium channel inhibitors such as carbamazepine/oxcarbazepine, lacosamide, and phenytoin would be better therapeutics if they inhibited action potential firing in excitatory neurons (primarily driven by Na_v1.2 and Na_v1.6 channels) without inhibiting firing of inhibitory interneurons (primarily Na_v1.1 channels) and also avoiding potential cardiac liabilities by not blocking Na $_{\rm V}$ 1.5.
- Because of the dynamic nature of sodium channel expression during development, some patients, particularly very young patients in the first months of life, may benefit more from a dual acting drug that blocks both $Na_v 1.2$ and $Na_v 1.6$ than from a purely selective inhibitor of Na_v1.6. Specifically, Na_v1.2 gainof-function patients (EIEE11) would likely benefit from such a compound.
- Sparing block of Na_v1.1 and Na_v1.3 is anticipated to be a benefit for patients as these channels drive firing of inhibitory interneurons in adults and neonates, respectively. Based on this theoretical framework we have created a dual $Na_{y}1.2/Na_{y}1.6$ inhibitor (XEN393) that has drug-like properties and effectively prevents electrically-induced seizures^{2,3} in mice and rats.

Na_v1.2/1.6 dual inhibitor has opportunities in numerous "top 10' childhood genetic epilepsies

Gene	Inheritance	Positive Cases	% of positive cases in dataset
SCN1A	AD	322	24.8
KCNQ2	AD	159	13.2
CDKL5	XL	99	7.6
SCN2A	AD	96	7.4
PRRT2	AD	59	7.2
PCDH19	XL	74	5.7
STXBP1	AD	61	5.1
SLC2A1	AD	47	3.6
GABRG2	AD	25	3.6
SCN8A	AD	30	3.6

Cortex Layer 2/3

Excitatory

GABAergic Interneurons

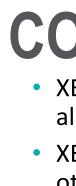
METHODS

- We created a novel small molecule sodium channel inhibitor, XEN393, with selectivity for Na_v1.2 and $Na_v 1.6$ over the other sodium channel isoforms.
- *In vitro*, Patch-clamp electrophysiology was employed to measure the potency and selectivity of XEN393 in voltage-gated sodium channel isoforms.
- *Ex vivo* brain slice electrophysiology was employed to assess the inhibition of action potentials generated through applied current to both excitatory and inhibitory neurons for a related analog.
- In vivo, we evaluated the ability of orally administered XEN393 to prevent electrically induced seizures in multiple electrically induced rodent models^{2,3}. Wild type CF-1 mice were employed in two assays that evoked a tonic-clonic seizure with hind-limb extension in 90% of vehicle treated mice, one using a direct current stimulation and another using alternating current stimulation. Analogous experiments were repeated in rats.

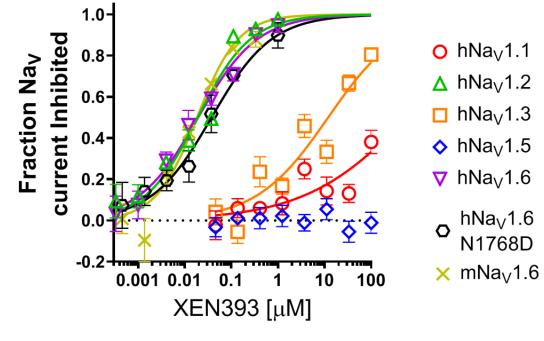
Neurocrine Biosciences, Inc. has an exclusive license to XEN901 and other pre-clinical selective Nav1.6 inhibitors and dual Nav1.2/1.6 inhibitors. All trademarks are the property of their respective owners.

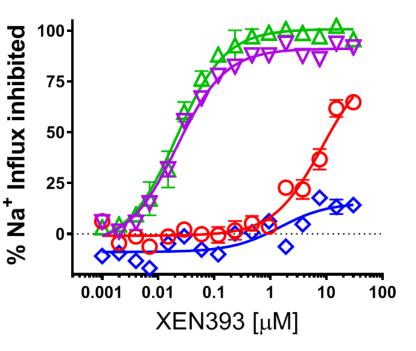
RESULTS

XEN393 has good drug-like properties, low off-target activity, and low risk of drug-drug interactions

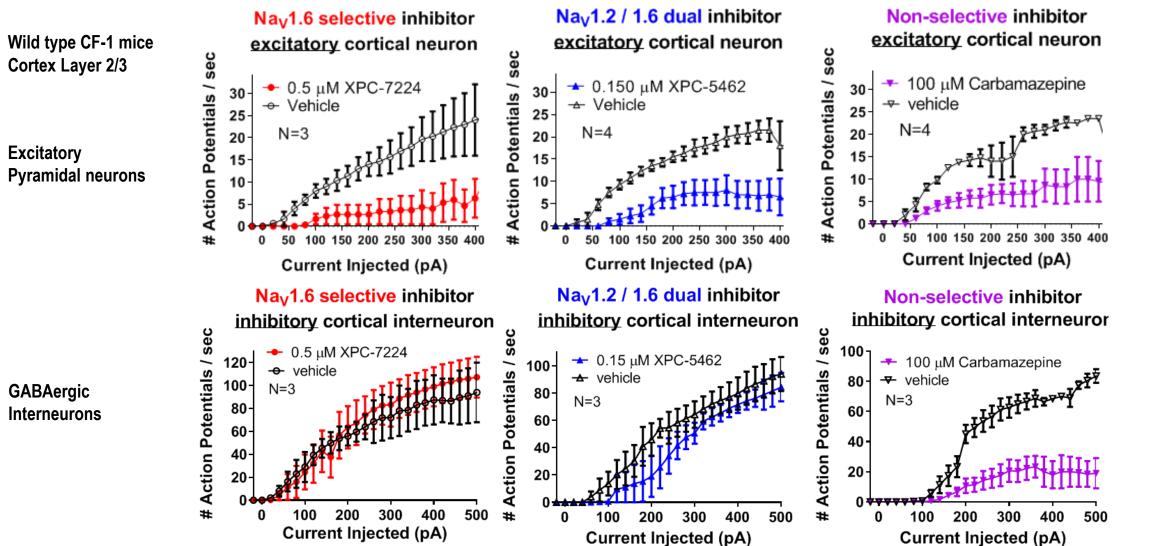

R = Rat; M = Mouse; D = Dog; C = Cyno	XEN393
es Cl _{hep} H / R / M / D / C	4.7 / 31 / 26 / 10 / 12
es Cl _{hep} H / R / M / D / C	9.3 / 45 / 59 / 1.1 / 12
: P _{app} / A to B Ratio	9.9 / 5.2
otein Binding H / R / M / D (%)	98.7 / 76.9 / 66.7 / 81.1
ogenate Binding H / R / M / D (%)	- / 79.3 / 82.6 / 76.9
Gal EC ₅₀ (µM) / ratio	>100 / 1
miniAmes	negative
hERG IC ₅₀ (μM)	>30
TDI (3A4) ratio	1.7-1.9
PXR EC ₅₀ (μM)	>20
B/P mouse / rat / dog	0.34 / 0.12 / 0.44
Rat iv T _{1/2} / Cl / V _d	6.3 / 22.1 / 12.0
Dog iv T _{1/2} / Cl / V _d	1.3 / 6.6 / 0.8
	es $CI_{hep} H / R / M / D / C$ es $CI_{hep} H / R / M / D / C$: P_{app} / A to B Ratio otein Binding H / R / M / D (%) ogenate Binding H / R / M / D (%) Gal $EC_{50} (\mu M)$ / ratio miniAmes hERG $IC_{50} (\mu M)$ TDI (3A4) ratio PXR $EC_{50} (\mu M)$ B/P mouse / rat / dog Rat iv $T_{1/2} / CI / V_d$

- Good permeability , good CNS penetration and predicted human half life of 9.6 hours
- Measureable plasma free fraction in all species
- Good metabolic stability in human liver microsomes and hepatocytes
- AMES negative (low risk of mutagenicity)
- >30 μM on HERG
- No PXR activity (low risk of CYP enzyme induction)
- Low time dependent inhibition of CYP enzymes & Low mitochondrial tox risk (low liver tox risk)

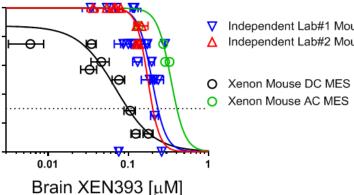


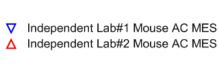

izing	0.8
Sei	0.6
tion	0.4
-rac	0.2
ш	0.0

EC ₇₀ Values for XEN393 in Electrically Induced Rodent Seizure Models					
<i>In Vivo</i> Seizure Model	Brain EC ₇₀ (μM)	<i>In Vivo</i> Seizure Model	Brain EC ₇₀ (μM)		
Mouse DC MES acute	0.1	Rat DC MES acute	0.13		
Mouse DC MES chronic	0.03	Rat DC MES chronic	0.036		
Mouse AC MES acute	~ 0.4*	Rat AC MES acute	0.25		
Mouse AC MES acute (Independent lab#1)	0.23	Rat AC MES acute (Independent lab#1)	0.1		
Mouse AC MES acute (Independent lab#2)	~ 0.20*	Rat AC MES acute (Independent lab#2)	0.07		



In Vitro Results: Concentration-Response Curves for XEN393 Across Sodium Channel Isoforms


Ex Vivo Results: Selective Inhibitors (Close analogs of XEN901 & XEN393) Spare Interneuron Firing While Carbamazepine Does Not

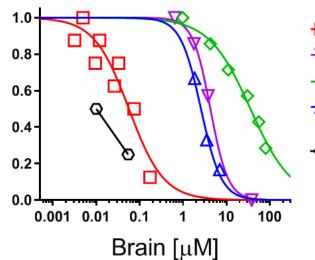


73rd Annual Meeting of the American Epilepsy Society | December 6-10, 2019 | Baltimore, MD

In Vivo Results: XEN393 prevented electrically-induced seizures invoked in both mice & rats with both direct or alternating current

Mouse Electrically Induced Seizures

Rat Electrically induced Seizures


0.01 0.1 Brain XEN393 [µM]

▼ Independent Lab #1 Rat AC MES Independent Lab #2 Rat AC MES

O Xenon Rat DC MES

O Xenon Rat AC MES

• The brain levels required for protection in mice stimulated with alternating current (EC₇₀ \sim 0.3 μ M) were slightly higher than in rats or in mice stimulated with direct current (EC₇₀ \sim 0.1 μ M).

XEN393 Acute

✓ Lacosamide Acute

↔ Carbamazepine Acute A Phenytoin Acute

↔ XPC393 Chronic

*Approximate value based on limited data points

XEN393 is Markedly More Potent *in vivo* than Non-Selective Sodium Channel Inhibitor Anti-Seizure Medications (ASMs)

CONCLUSIONS

All data from Xenon DC MES assay in WT SD rats

• XEN393 provides a novel, mechanistically differentiated profile distinct from XEN901 and all marketed non-isoform selective sodium channel blockers.

• XEN393 selectively inhibits $Na_v 1.2$ and $Na_v 1.6$ channels with >600-fold selectivity over the other sodium channel isoforms including those critical for inhibitory neuron (Na $_{\rm v}$ 1.1) and cardiac (Na $_{\rm v}$ 1.5) function.

• Brain concentrations of XEN393 that block the target channels were well tolerated and prevented electrically induced seizures in mice and rats.

• This work enables the testing of the hypothesis that selective dual $Na_v 1.2/Na_v 1.6$ inhibitors, such as XEN393, that spare Na_v1.1, Na_v1.3 and Na_v1.5 may provide a new class of more effective and better tolerated seizure prevention ASMs in clinical practice.

• Xenon is progressing a dual, selective $Na_v 1.2/1.6$ inhibitor into IND-enabling toxicology studies.

¹Lindy, A.S. *et al.* Diagnostic outcomes for genetic testing of 70 genes in 8565 patients with epilepsy and neurodevelopmental disorders. *Epilepsia*. 2018; 59(5):1062-1071

²Löscher W. *et al.* The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. II. Maximal electroshock seizure models. Epilepsy Research. 1991; 8(2):79-94.

³White H.S. *et al.* The early identification of anticonvulsant activity: role of the maximal electroshock and subcutaneous pentylenetetrazol seizure models. Italian Journal of Neurological Sciences. 1995;16(1-2):73-77.

