Development of XEN496, a Pediatric Immediate-Release Formulation of the Potassium Channel Opener Ezogabine

BACKGROUND

XEN496: A pediatric formulation of ezogabine suitable for weight-based dosing

• XEN496 is a pediatric formulation of ezogabine (retigabine), a neuronal KCNQ (Kv7) potassium channel modulator under development by Xenon Pharmaceuticals as a precision medicine treatment for KCNQ2-related neonatal developmental and epileptic encephalopathy (KCNQ2-DEE).

- Ezogabine was previously marketed by GlaxoSmithKline as a coated immediate-release (IR) tablet formulation (Potiga[®]/Trobalt[™]) for adjunctive treatment of focal seizures in patients aged 18 years and older, but it was withdrawn from the global market in July 2017 for commercial reasons.
- While the tablet formulation was used off-label in the KCNQ2-DEE pediatric population, a pediatric formulation was not marketed. Moreover, ezogabine has never been studied in a formal clinical trial in this population.
- In view of our development plans for ezogabine in KCNQ2-DEE, we undertook the development of a pediatric-friendly formulation (XEN496) to allow for flexible weight-based dosing without requiring extemporaneous compounding.

Case Study of 11 KCNQ2-DEE Patients Millichap 2016 ¹	Medical Record Review/Parent Interviews Olson 2017 (8 Families) ²
Ezogabine associated with improvements in seizures and/or development in:	Interviews/medical record review of KCNQ2-DEE patients prescribed ezogabine:
 3 of the 4 infants treated before 6 month old were seizure free or occasional seizures <1/week 	 Sustained improvement in seizure frequency in 5 of the 6 children with at least weekly seizures
• 2 of the 7 treated later	 Improvements in development or cognition in all 8
 No serious adverse effects 	children
	 Urinary retention/hesitation in 3 patients, but overall well tolerated

¹Millichap *et al. Neurol. Genet.* Oct 2016, 2:1-5.; ²Olson *et al.* 2017 AES Annual Meeting, Abstract 3.176

METHODS

- A modified quality-by-design approach was implemented in the formulation development of this Biopharmaceutical Classification System Class 2 (low water solubility, high permeability) drug. In addition, a risk-based matrix was developed to guide the advancement of different prototypes.
- Excipient compatibility for ezogabine was established through an accelerated-condition (40°C, 75% relative humidity) stability study of mixtures of ezogabine and excipients. Lead blends within the compatibility space were then designed and their *in vitro* dissolution profiles determined.
- Blends with the most promising dissolution profiles were dry granulated through roller compaction and re-tested for dissolution prior to stability assessment.
- The impact of drug loading on dissolution performance was also assessed, along with the potential for non-specific binding of formulated ezogabine to common plastics such as those employed in feeding bottles and nasogastric feeding tubes.
- The candidate formulation was then advanced to rat pharmacokinetic (PK) studies in order to confirm its biopharmaceutical performance *in vivo* and placed on long-term stability studies.

Composition (% w/w)							%	
Blend #	ΑΡΙ	мсс	Starch 1500	PVP	НРМС	BHT	Increase in TRS [*]	
1	5	45	44.99		5	0.01	0.38	
2	5	45	44.99	5		0.01	0.50	
3	5	42.5	42.49		10	0.01	0.27	
4	5	37.5	37.49		20	0.01	< 0.05	
5	5		89.99		5	0.01	0.17	
6	5	89.99			5	0.01	0.33	
7	5		89.99	5		0.01	0.17	
8	5	17.5	72.49		5	0.01	0.34	

Superior release of ezogabine was found with adding a super-disintegrant at an optimal drug load of 20%

	Composition (% w/w)					% Released	
Blend # API	внт	НРМС	Starch 1500	мсс	Other Excipients	at T = 30/60 minutes [*]	
1	5	0.01	5	44.99	45		64.1 / 70.2
2	5	0.01	20	37.49	37.5		85.8 / 89.4
3	5	0.01	5	42.49	42.5	Croscarmellose sodium (5%)	89.7 / 93.1
4	20	0.01	5	19.99	45	Polyplasdone [®] XL (10%)	96.9 / 100.5
5	5	0.01	5	24.99	25	Lactose (40%)	70.4 / 74.7
6	5	0.01	5	59.99	30		63.9 / 69.4
7	6.98	0.01	6.98	79.05		Croscarmellose sodium (6.98%)	80.6 / 84.2
8	10	0.01	5	29.99	45	Polyplasdone [®] XL (10%)	80.3 / 82.1
9	10	0.01	5	29.99	45	Polyplasdone [®] Ultra (10%)	84.3 / 90.4
10	10	0.01	5	42.49	45		80.5 / 81.6
11	20	0.01	5	37.49	37.5		88.3 / 91.9
12	10	0.01	5	19.99	40	Lactose (20%) + CCNa (5%)	85.9 / 86.3

ā

Jay A. Cadieux; Matthew D. Tandy; Rostam Namdari; Ernesto Aycardi Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC, Canada

RESULTS

The microcrystalline cellulose (MCC)/starch system, combined with the use of HPMC as binder, was most compatible with ezogabine

[•] Percentage increase in Total Related Substances (TRS) (*i.e.*, degradants) by HPLC/UV after 4 weeks of open storage at 40°C/75% relative humidity; PVP = poly(vinylpyrrolidone) (binder): HPMC = (hydroxypropyl) methylcellulose (binder); BHT = butylated hydroxytoluene (preservative)

Table 1: Chemical Stability Evaluation of Ungranulated Prototype Formulations

 Table 2: Dissolution Testing of Ungranulated Prototype Formulations

^{*} pH 1 (0.1 N HCl), 37 °C, n = 6

• Incorporation of Polyplasdone[®] XL (crospovidone, USP/NF) as a super-disintegrant led to significant improvements in the dissolution profile (Blend 4 vs. Blend 1).

• Superior results were obtained using a 20% w/w API loading (Blend 4 vs. Blend 8).

• Blend 4 was progressed into dry granulation/roller compaction to afford XEN496.

• Following granulation, the dissolution profiles of ezogabine (neat API) and of XEN496 were determined in USP pH 1.2 buffer at 37 °C. XEN496's dissolution profile is consistent with an immediate-release drug product.

XEN496 rapidly and efficiently releases ezogabine

• The particle size distribution of XEN496 was determined by laser light scattering. XEN496 is expected to be compatible with baby bottle nipples and pediatric naso-gastric (NG) feeding tubes.

Rats

• XEN496, a pediatric formulation of ezogabine (granules suitable for dispersal in breast milk, infant formula or soft foods, packaged in single-use sachets or sprinkle capsules of varying fill weights) was developed and progressed into clinical development.

XEN496 is compatible with pediatric dosing, including common feeding devices

	Diameter (µm)
XEN496 d ₁₀	13.4 ± 0.4
XEN496 d ₅₀	41.6 ± 1.6
XEN496 d ₉₀	153 ± 31
aby bottle nipple aperture	> 500
4 Fr pediatric NG tube	1330

Material	Recovery (%)
Glass	100.0
Polyether sulfone	96.9
Polyphenyl sulfone	96.7
Polypropylene	96.5

• Spike-recovery experiments with XEN496 showed only negligible non-specific binding of ezogabine to materials commonly-employed in baby bottles and NG tubes.

XEN496 was comparable to compounded Potiga[®] tablets in rats

• XEN496 was compared to crushed Potiga[®] tablets (mimic of compounding/previous pediatric clinical practice) in a rat cross-over PK study.

N = 6, male Sprague-Dawley rats, dose level 10 mg/kg

Test articles suspended (1 mg/mL) in 0.02% w/v aq. CMC (viscosity-matched to infant formula) and dosed by oral gavage.

Figure 2: Plasma Concentrations of Ezogabine after PO Dosing of XEN496 (Pediatric Granules) and Crushed Potiga® (Powdered Ezogabine Tablets) in

CONCLUSIONS

• This formulation is presently the focus of a PK study in adult healthy volunteers.

• Results from the human PK study will inform the need for potential dose adjustments in an planned pivotal study of XEN496 in KCNQ2-DEE.

• XEN496 has promising in vitro and in vivo properties consistent with marketed pediatric drug products.

Figure 3: XEN496 & XEN496 Sprinkle Capsules

光 X E N O N