14

Presented at the: **BIOMARIN SCIENTIFIC EXHIBIT** "Genetic Epilepsies – Updates in Science and Diagnosis"

Selective Sodium Channel Inhibitors and Potentiators; Pharmacology in Cortical Slices from Wild-Type and Dravet Mice

Informational Poster Prepared by Xenon Pharmaceuticals Inc.

C

BACKGROUND

- An ideal anti-seizure medicine would inhibit excitatory circuits while stimulating inhibitory circuits.
- Voltage-gated sodium channel inhibitors (e.g. carbamazepine) are effective anti-seizure medications (ASMs) but these drugs inhibit the sodium channels that drive inhibitory interneuron firing (Na_v1.1) as well as those primarily linked to excitatory neuron firing (Na_v1.2) & Na_v1.6).
- Gain-of-function mutations in both *Scn8a* (encoding Na_v1.6) and *Scn2a* (Na_v1.2) cause early infantile epileptic encephalopathy in humans (EIEE13 & EIEE11, respectively).
 - Selective inhibitors of Na_v1.2 & Na_v1.6 that spare Na_v1.1 should provide improved ASMs.
- Loss-of-function mutations in *Scn1a* (encoding Na_v1.1) cause Dravet Syndrome (EIEE6) and nonselective sodium channel inhibitors can exacerbate seizures in Dravet Syndrome.
 - Selective Enhancers of Na_v1.1 should create specific therapy for Dravet Syndrome patients

RESULTS XPC-7224 Inhibits Only Na_v1.6; XPC-5462 inhibits Only Na_v1.6 & Na_v1.2

Dual Na_v1.6 & Na_v1.2 Inhibitor

- XPC-7224 is highly selective for Na_v1.6.
- XPC-5462 blocks both Na_v1.6 and Na_v1.2; spares Na_v1.1 (Inhibitory Interneurons) and Na_v1.5 (Cardiac).
- Carbamazepine is similarly potent on all Na_v isoforms.
- For subsequent neuronal experiments we chose concentrations \sim 3X higher than the Na_v1.6 IC_{50} to target inhibition of ~ 80% of Na_v1.6 currents. The concentration used is indicated by the dotted vertical line on the selectivity graphs at the top:

XPC-7224, 0.5 μM
XPC-5462, 0.15 μM
Carbamazepine, 100 μM

Compound	Na _v 1.1	Na _v 1.6	Na _v 1.2	Na _v 1.5	Selectivity
	EC ₅₀ (μM)	EC ₅₀ (μM)	EC ₅₀ (μM)	EC ₅₀ (μM)	Na _v 1.1/1.X
Dominant	Inhibitory	Excitatory	Excitatory	Heart:	
Channel	Interneurons	Neurons	Neurons	Cardiomyocytes	
XPC-8770	0.040	>30	>30	>30	>750

73rd Annual Meeting of the American Epilepsy Society | December 6-10, 2019 | Baltimore, MD

interneurons at concentrations of 150 nM and 1 μ M.

CONCLUSIONS

• Selective Inhibitors of specific sodium channel isoforms expressed in excitatory neurons, $Na_v 1.2$ and $Na_v 1.6$, enables selective reduction of action potential firing in those neurons, and prevents the simultaneous impairment of the activity of inhibitory interneurons.

• Selectively potentiating Na_v1.1, the dominant sodium channel isoform expressed in inhibitory interneurons, restores the capability of *Scn1a*^{+/-} interneurons to fire action potentials at high frequency.

 Novel small molecule modulators of brain voltage-gated sodium channels have the potential to drive new personalized therapies for patients with both Gain and Loss of function mutations.

• Xenon is engaged in preclinical efforts to develop small molecule enhancers of Na_v1.1 for the treatment of Dravet Syndrome.

H X E N O N