
Selective Potentiation of Na_v1.1 Channels by XPC-837 in Dravet Mice Suppresses Spontaneous Seizures, Prevents SUDEP and Increases LTP

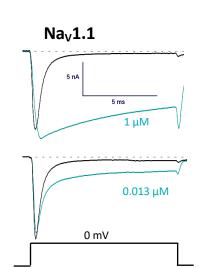
Samuel J. Goodchild, 1 Kristen Burford, 1 Celine Dube, 1 Samrat Thouta, 1 Arjun Mahadevan, 1 Maegan Soriano, 1 Maja Filipovic, 1 Vishaal Rajani, 1 Emily Hurley, 1 Gloria Yang, 1 Verner Lofstrand,¹ Helen Clement,¹ Davie Kim,¹ Steven Wesolowski,¹ Alison Cutts,¹ James Empfield,¹ J.P. Johnson Jr. ¹

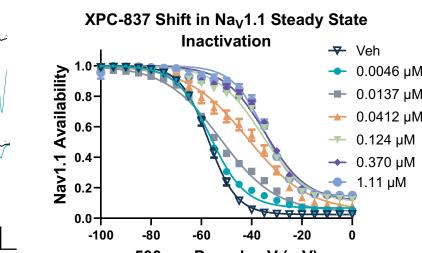
¹Xenon Pharmaceuticals Inc., Vancouver, BC, Canada

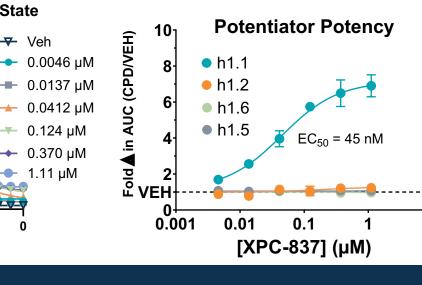
INTRODUCTION

 Loss-of-function variants of SCN1A cause Dravet Syndrome by decreasing Na_v1.1 expression or conductance in inhibitory interneurons. The resulting hypo-excitability of interneurons reduces inhibitory input on excitatory neurons and leads to epilepsy and developmental delays^{1,2}.

- A precision medicine therapy for Dravet Syndrome should restore Na_v1.1 activity specifically without impacting other neuronal proteins, especially ion channels.
- We are developing orally available small molecule $Na_v1.1$ potentiators that can directly target the underlying etiology of Dravet Syndrome and thus provide a potentially disease modifying therapy for Dravet Syndrome.

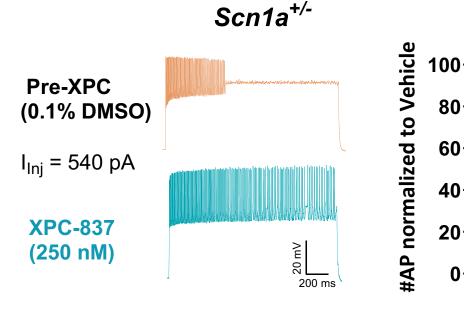

METHODS

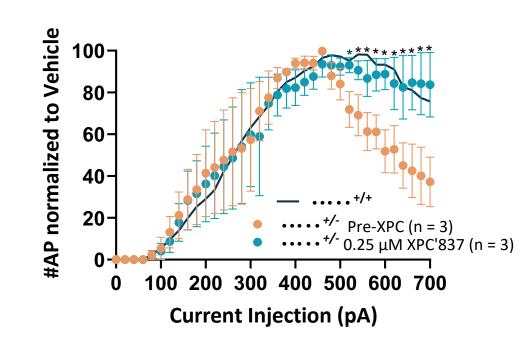

- Voltage clamp automated electrophysiology was used to assess potency and selectivity of XPC-837 in HEK cell lines stably expressing Na_V 's. Error bars are \pm SEM.
- Electrophysiological Recordings in Brain Slices. Whole-cell current-clamp recordings were made in cortical layer 5. Fast-spiking interneurons expressing viral reporter were targeted for patching.
- Scn1a^{+/-} Mouse line was described in Miller et al.³
- Scn1a+/- Rotarod. Scn1a+/- male mice were tested at P21-22 and P24-P28 respectively.
- *Scn1a*+/- spontaneous seizure assay/SUDEP. *Scn1a*+/- mice were fed with medicated chow
- LTP Hippocampal local field potentials were recorded from sagittal brain slices from female $Scn1a^{+/-}$ mice administered with medicated chow for 14 days. Stimulation of the CA3 Schaffer collaterals with a theta burst high frequency stimulation induced a long-term potentiation (LTP) in CA1 hippocampal neurons and compared between groups (one way
- RNAseq: Saphenous vein blood or hippocampal tissue was taken from wild type, $Scn1a^{+/-}$, and $Scn1a^{+/-}$ + XPC837 mice at P25-27 and P35, respectively. Mice and samples were individually identified in a spontaneous seizure study for downstream analysis. Significantly differential gene expression (DEG) patterns were identified; all DEGs shown have p<0.05 for a change between analyzed groups, when corrected for multiple testing using the Benjamini-Hochberg (BH) false discovery rate.


RESULTS

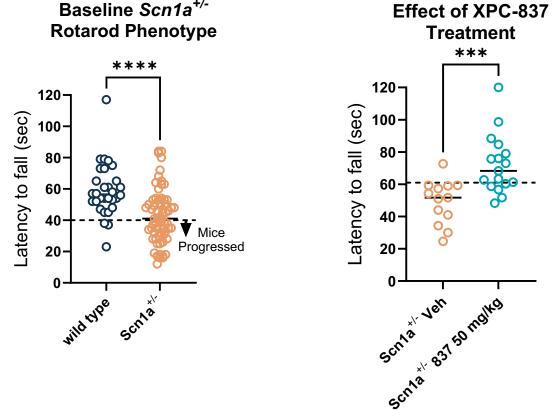
XPC-837 Potently and Selectively Potentiates Na_v1.1

- XPC-837 stabilizes the open state of the $Na_V1.1$ channel selectively with an EC₅₀ of 45 nM.
- XPC-837 destabilizes steady state inactivation and increases channel availability across a range of potentials close to neuronal resting membrane potentials.





XPC-837 Normalizes Interneuron Function in *Scn1a*^{+/-} mice


 In brain slices from Scn1a^{+/-} mice, PV+ interneuron firing frequency was significantly increased by XPC-837 at current injections where depolarization block occurred indicating a higher firing frequency of fast spiking inhibitory interneurons.

A Single Oral Dose of XPC-837 Improves Motor Performance in Scn1a^{+/-} Mice

 XPC-837 rescues function in the Rotarod assay of *Scn1a*+/- mice suggesting efficacy against non-seizure related symptoms such as motor dysfunction.

Vehicle Chow, n=18

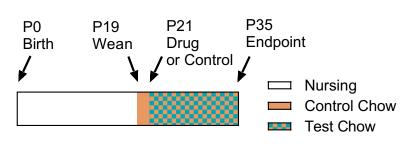
→ XPC-837 Chow, n=18

22 24 26 28 30 32 34

Postnatal Day

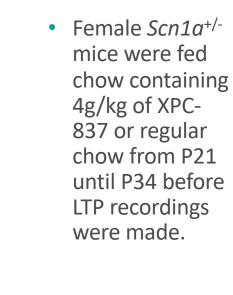
p = 0.003 (Log-rank test)

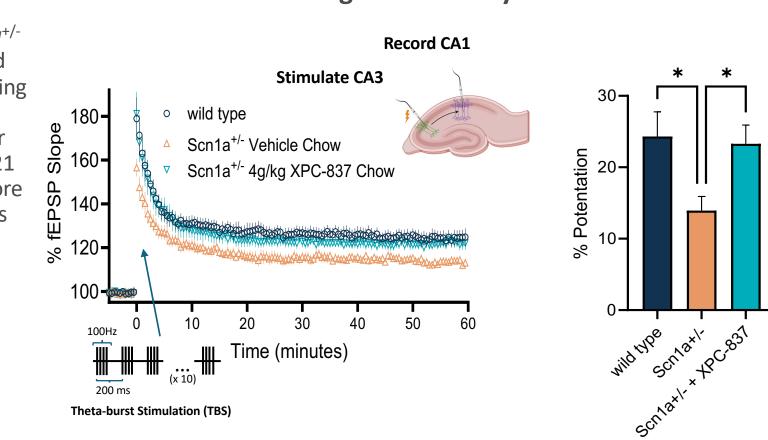
Vehicle Chow n = 19

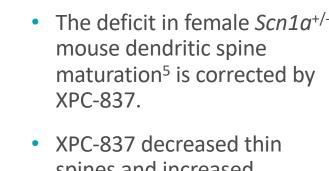

XPC-837 Chow n = 20

22 24 26 28 30 32 34

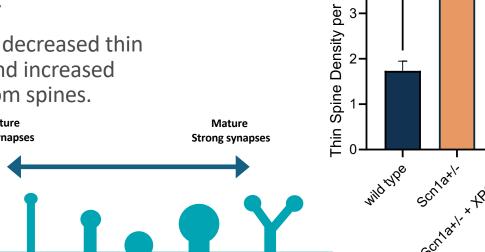
Postnatal Day

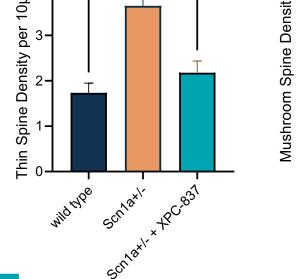

Chronic Oral Dosing of XPC-837 Protects Scn1a+/- Mice from Spontaneous Seizures and SUDEP


40-

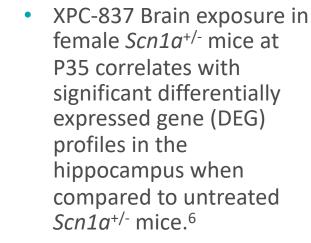

- *Scn1a*^{+/-} mice were fed with chow containing 4g/kg of XPC-837 or regular chow from P21 until P35.
- Audio detection of vocalizations associated with behavioral seizure was used to identify spontaneous seizures in male mice that were confirmed with manual examination of video.
- Chronic dosing led to significant suppression of seizures with brain exposures at the end of the experiment on P36 of 0.55 μM. The chronic brain exposure is similar to the *ex vivo* concentration found to be efficacious in brain slice to correct PV interneuron deficits in firing.
- Female *Scn1a*^{+/-} mice were significantly protected from SUDEP.

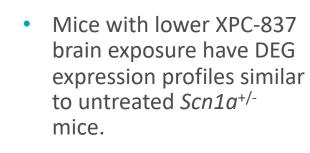
Chronic Oral Dosing of XPC-837 in Scn1a^{+/-} Mice Increases Long Term Potentiation – A Potential Cellular Correlate of Learning and Memory

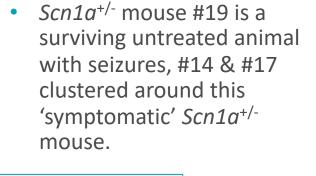


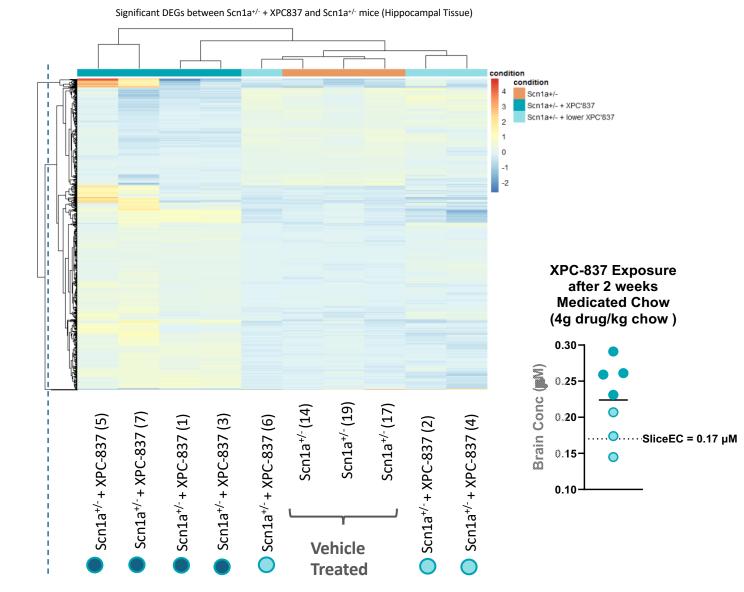


XPC-837 Produces a More Mature Spine Morphology in *Scn1a*^{+/-} mice

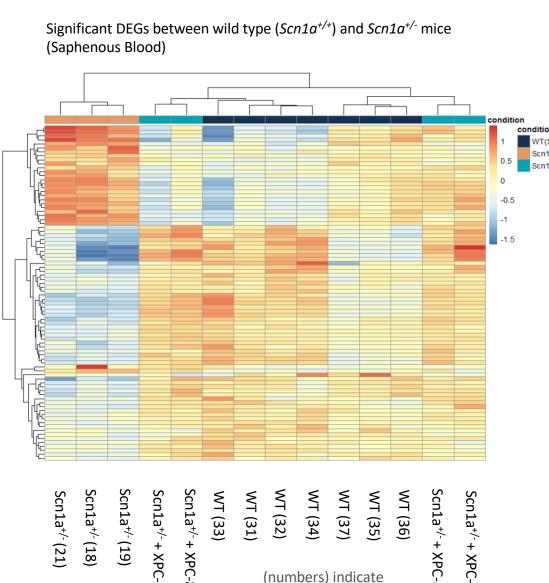







Adapted from Risher et al.4

XPC-837 Modulates Hippocampal Gene Expression in Scn1a^{+/-} mice



XPC-837 Modulates Peripheral Gene Expression in Scn1a^{+/-} mice

- For genes that are significantly different in wild type and $Scn1a^{+/-}$ mice (DEGs), high exposure XPC-837 *Scn1a*^{+/-} mice group with wild type mice.
- Untreated *Scn1a*^{+/-} mice group together separately.
- Suggests that XPC-837 realigns *Scn1a*+/ 'disease-related' genes back toward wild-type
- Blood sampling of mice early (P25-27) avoids survivor bias that can be present in the brain tissue data analysis at

individual mouse

represented by the

CONCLUSIONS

- XPC-837 is an orally available, CNS penetrant, highly Na_v1.1-selective small molecule potentiator that stabilizes open states, increases channel availability, and Na⁺ flux.
- This MOA increases interneuron excitability in $Scn1a^{+/-}$ mouse neurons.
- Acute dosing of XPC-837 improves motor performance in the Rotarod assay, supporting the potential for improvements in Dravet patient motor function.
- Chronic dosing over 14 days with XPC-837 in chow supresses spontaneous seizures, prevents SUDEP, increases LTP, and produces a more mature dendritic spine morphology.
- RNAseq data demonstrates patterns of gene expression differences in blood cells between wild type and $Scn1a^{+/-}$ mice; these differences were normalized by administration of XPC-837 to Scn1a+/- mice.
- Efficacious concentrations of XPC-837 in chronic dosing experiments in $Scn1a^{+/-}$ mice were similar across assays and consistent with brain slice data.
- XPC-837 represents a novel, mechanistically differentiated, orally available compound with the potential to provide an improved therapeutic profile for the overarching treatment of Dravet Syndrome.

References 1. Claes et al., Am J Hum Genet, 2001 May 15:68(6):1327–1332, 2. Tai et al. *Proc Natl Acad Sci U S A.* 2014;111(30):E3139-E3148. **3.** Miller et al. *Genes Brain Behav.* 2014 Nov 14;13(2):163–172. **4.** Risher et al. *PLoS One.* 2014 Sep 10;9(9):e107591. **5.** Pizzamiglio et al. *Neurobiol Dis*. 2025 Apr:207:106853 **6.** Hawkins NA, et al. Exp Neurol. 2019 Jan:311:247-256.

ACKNOWLEDGEMENTS The Na_v1.1-deficient mice were licensed from Vanderbilt University and were developed by Dr. Jennifer Kearney and others; all rights, title and interests in the Na_v1.1-deficient mice are owned by Vanderbilt.

DISCLOSURES All authors are employees of and own stock or stock options in Xenon Pharmaceuticals Inc.

FUNDING This study was funded by Xenon Pharmaceuticals Inc.

Legend for all Figures: * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001